A design of active elastic metamaterials for control of flexural waves using the transformation method
نویسندگان
چکیده
The ability to control flexural wave propagation is of fundamental interest in many areas of structural engineering and physics. Metamaterials have shown a great potential in subwavelength wave propagation control due to their inherent local resonance mechanism. In this study, we propose a transformation method to derive the material properties of a flexural waveguide and implement the functionality based on a design of active elastic metamaterials. The numerically demonstrated flexural waveguide can not only steer an elastic wave beam as predicted from the transformation method but also exhibit various unique properties including extraordinary wave beam deflection and tunabilities over a broad frequency range and various steering directions. The waveguide is equipped with an array of active elastic metamaterials composed of the electrorheological elastomer subjected to adjustable electric fields. Such metamaterial-based waveguides provide a new design methodology for guided wave signal modulation devices and could be useful for applications such as tunable beam steering, high signal-to-noise sensors, and structural health monitoring.
منابع مشابه
Stress Waves in a Generalized Thermo Elastic Polygonal Plate of Inner and Outer Cross Sections
The stress wave propagation in a generalized thermoelastic polygonal plate of inner and outer cross sections is studied using the Fourier expansion collocation method. The wave equation of motion based on two-dimensional theory of elasticity is applied under the plane strain assumption of generalized thermoelastic plate of polygonal shape, composed of homogeneous isotropic material. The freque...
متن کاملExperimental demonstration of ordered and disordered multiresonant metamaterials for lamb waves.
We demonstrate the experimental realization of a multiresonant metamaterial for Lamb waves, i.e., elastic waves propagating in plates. The metamaterial effect comes from the resonances of long aluminum rods that are attached to an aluminum plate. Using time-dependent measurements, we experimentally prove that this metamaterial exhibits wide band gaps as well as sub- and suprawavelength modes fo...
متن کامل3D isotropic metamaterial design using smart transformation optics
We introduce new design method for 3D isotropic transformation optics device using smart transformation optics. In 2 dimension smart transformation optics, elastic deformation satisfied quasi-conformal transformation with negative Poisson’s ratio -1. We extended smart transformation optics to 3 dimension and demonstrated 3D isotropic metamaterials waveguide. This 3D waveguide is arbitrary benda...
متن کاملBand Gap Control in an Active Elastic Metamaterial With Negative Capacitance Piezoelectric Shunting
Elastic metamaterials have been extensively investigated due to their significant effects on controlling propagation of elastic waves. One of the most interesting properties is the generation of band gaps, in which subwavelength elastic waves cannot propagate through. In the study, a new class of active elastic metamaterials with negative capacitance piezoelectric shunting is presented. We firs...
متن کاملPolarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials
Elastic waves exhibit rich polarization characteristics absent in acoustic and electromagnetic waves. By designing a solid elastic metamaterial based on three-dimensional anisotropic locally resonant units, here we experimentally demonstrate polarization bandgaps together with exotic properties such as 'fluid-like' elasticity. We construct elastic rods with unusual vibrational properties, which...
متن کامل